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Abstract

Gene expression can be influenced by genetic variants that are closely linked to the

expressed gene (cis eQTLs) and variants in other parts of the genome (trans eQTLs). We

created a multiparental mapping population by sampling genotypes from a single natural

population of Mimulus guttatus and scored gene expression in the leaves of 1,588 plants.

We find that nearly every measured gene exhibits cis regulatory variation (91% have FDR <
0.05). cis eQTLs are usually allelic series with three or more functionally distinct alleles. The

cis locus explains about two thirds of the standing genetic variance (on average) but varies

among genes and tends to be greatest when there is high indel variation in the upstream

regulatory region and high nucleotide diversity in the coding sequence. Despite mapping

over 10,000 trans eQTL / affected gene pairs, most of the genetic variance generated by

trans acting loci remains unexplained. This implies a large reservoir of trans acting genes

with subtle or diffuse effects. Mapped trans eQTLs show lower allelic diversity but much

higher genetic dominance than cis eQTLs. Several analyses also indicate that trans eQTLs

make a substantial contribution to the genetic correlations in expression among different

genes. They may thus be essential determinants of “gene expression modules,” which has

important implications for the evolution of gene expression and how it is studied by

geneticists.

Author summary

Mimulus guttatus (yellow monkeyflower) is a model for the study of quantitative trait evo-

lution in natural populations. Research has focused mainly on whole organism traits like

flower size or herbivore resistance, but the level of expression of a gene is also a quantita-

tive trait. In this study, we dissect leaf transcriptome variation using a breeding design

that estimates the contribution of individual loci to expression variation (eQTLs). We find

rough agreement to the “oligogenic model” of inheritance where a major locus (the cis

regulatory region) generates much of the genetic variation in the population. Associations

studies usually characterize genetic effects as binary (e.g. the two alternatives at a single

nucleotide polymorphism or “SNP”), but this description is insufficient for Mimulus.

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011072 April 11, 2024 1 / 31

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Veltsos P, Kelly JK (2024) The

quantitative genetics of gene expression in

Mimulus guttatus. PLoS Genet 20(4): e1011072.

https://doi.org/10.1371/journal.pgen.1011072

Editor: Jesse R. Lasky, Pennsylvania State

University Main Campus: The Pennsylvania State

University - University Park Campus, UNITED

STATES

Received: November 22, 2023

Accepted: March 23, 2024

Published: April 11, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pgen.1011072

Copyright: © 2024 Veltsos, Kelly. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The trimmed RNAseq

reads have been submitted to the Sequence Read

Archive (SUB12286589, SUB12291949) under

bioproject PRJNA902708.

https://orcid.org/0000-0002-8872-6281
https://orcid.org/0000-0001-9480-1252
https://doi.org/10.1371/journal.pgen.1011072
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1011072&domain=pdf&date_stamp=2024-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1011072&domain=pdf&date_stamp=2024-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1011072&domain=pdf&date_stamp=2024-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1011072&domain=pdf&date_stamp=2024-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1011072&domain=pdf&date_stamp=2024-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1011072&domain=pdf&date_stamp=2024-04-30
https://doi.org/10.1371/journal.pgen.1011072
https://doi.org/10.1371/journal.pgen.1011072
http://creativecommons.org/licenses/by/4.0/


Most loci exhibit multiple, and in some cases, a continuum of alleles. We find that trans

eQTLs have different features than cis eQTLs, both in terms of the diversity and genetic

dominance of alleles. These genetic features of eQTLs are critical determinants of the “G

matrix,” the genetic variances and covariances among all genes which determine how

gene expression will evolve under selection in response to changing environmental condi-

tions. Our finding of large effect sizes and high allelic diversity suggests that the G matrix

may be surprisingly malleable, even on ecological timescales.

Introduction

Gene expression is a quantitative trait. Expression scored from sequence-read counts (RNAseq

[1]) is strongly influenced by environmental variables, measurement error, and the complex

interaction of many genes [2]. A vast methodology has been developed for the analysis of

quantitative traits with applications to agriculture, conservation, and the evolution of natural

populations [3,4]. When RNAseq is applied to a population, specifically to a collection of geno-

types that have been randomly sampled from a deme, the machinery of quantitative genetics

can be employed to address basic questions about the potential for gene expression to evolve.

We can ask how many loci affect expression of each gene and how large their respective effects

are. The effect/number distribution is essential for predicting how rapidly expression will

evolve under natural selection [5,6]. Population allele frequencies are a second critical aspect

of quantitative trait variation. Determining whether alleles at expression Quantitative Trait

Loci (eQTLs) are typically rare or intermediate in frequency tests hypotheses about the evolu-

tionary forces that maintain variation [7]. Next, we can ask whether gene expression is affected

by genetic complexities such as dominance, epistasis, or genotype by environment interaction.

These factors influence the mapping from genotype to fitness and thus the amount of genetic

variation in expression available to selection. Finally, recognizing that the entire transcriptome

is just a very long vector of quantitative traits [8], we need to determine the genetic basis of

correlations among genes in their expression levels. Estimating the respective contributions of

genetic and environmental factors to covariances is essential to understanding co-expression

patterns across the genome.

Gene expression is unlike other quantitative traits in that we know the location of one very

important locus prior to genetic mapping. The DNA surrounding a gene is likely to contain

regulatory sequences such as promoters and enhancers. This locus, the cis eQTL, is thus a

strong candidate as an effector of expression. What fraction of the total genetic variance in

expression is generated by the cis eQTL? The proximity of regulatory DNA to the expressed

gene suggests an oligogenic model of inheritance [9], where most variation is generated by a

“major effect” cis eQTL. There will also be a lesser contribution of numerous unlinked modifi-

ers (trans eQTLs). However, association studies of gene expression variation in humans sug-

gest a very different model. Even if the cis eQTL is the most important single locus, it may

explain only a minor fraction of the genetic variance in expression. The omnigenic model

[10,11] posits that many trans eQTLs, each with small effects and distributed uniformly over

the entire genome, generate the bulk of variation in expression.

Genetic dominance is likely to differ between cis and trans eQTLs. Additive gene action is

expected for cis eQTLs [12,13] given that regulatory molecules like transcription factors bind

separately to each allele. With allele-specific effects on expression, additivity results if the over-

all expression of a gene is the sum of the mRNAs produced independently by each allele. This

simple model can breakdown if there is imprinting [14] or if feedback mechanisms such as
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autoregulation [15] cause the realized mRNA levels of one allele to depend on the expression

of the other. In contrast to cis, there is no a priori reason to assume additive gene action for

trans eQTLs. The product of a trans acting locus (say a transcription factor protein) can affect

both alleles of the expressed gene [2].

Cis and trans eQTLs should also contribute differentially to genetic covariances between

expressed genes. Genetic covariances result from pleiotropy, linkage disequilibria, and in pop-

ulations that inbreed to some extent, identity disequilibrium [16,17]. In this paper, we apply a

breeding design where all individuals have a known ancestry. This allows us to estimate the

combined effects of pleiotropy and LD on the co-expression of genes and the contribution of

individual QTLs to these covariances [18,19]. When considering multiple expressed genes, a

single locus can have multiple effects, both cis and trans. While it is typical to think of cis

eQTLs as effectors of a single gene, a single mutation could affect the expression of multiple

closely linked genes by altering local DNA accessibility. Distinct mutations in regulatory

regions of closely linked genes will generate a genetic covariance if these mutations are in link-

age disequilibrium in the population. Trans eQTLs can generate genetic covariances in several

ways. Most obviously, a trans eQTL that affects many genes will generate covariation in

expression among all its targeted genes. More directly, the cis effect of a mutation on a regula-

tory gene should generate a correlation between the expression of that gene and the expression

level of downstream target genes (for which the mutation would be a trans eQTL).

In this paper, we describe an experiment to characterize variation and covariation in gene

expression, and then estimate the contribution of individual genetic loci to this (co)variation.

We created a multiparental mapping population by intercrossing genotypes from one natural

population and then measured gene expression in leaf tissue (Fig 1B). The replicated F2 cross-

ing design (Fig 1A) produces high variance in relatedness of individuals, which is essential for

estimating genetic (co)variances. It generates both homozygous and heterozygous genotypes

at individual loci, necessary for characterizing how both the additive and dominance effects of

eQTLs contribute to variation. We analyzed these data using two complimentary approaches.

The “Cross-specific analysis” treats each of the nine families as a distinct entity and extracts

estimates for QTL effects in the fashion of a single F2 mapping population, e.g. [20]. The

“Combined analysis” considers all plants simultaneously with the relatedness of each F2 plant

to all other plants estimated through genomewide similarity [21]. Given sufficient variation in

relatedness, we partition expression variation into genetic and environmental components

using the classical “animal model” ([22], i.e. the linear mixed model [23]). Finally, we deter-

mine the contribution of individual loci to the genetic component of variation established in

this context.

Results

Mapping RNAseq reads to our de novo assemblies effectively genotypes F2

plants

Two of the ten parental lines (767 and 62) used in this study were sequenced and assembled by

the Joint Genome Institute [24], while the other eight were assembled from our long-read

sequencing (see Methods A). De novo assembly of the long reads yielded two to four large scaf-

folds per chromosome with a high inclusion of genes (BUSCO completeness 93–94%, S1

Table). We used genetic maps obtained from our F2 genotyping to assemble scaffolds into

pseudo-chromosomes. Next, we called SNPs among these lines and report the nucleotide

diversity within and around each gene in S2 Table. These comparisons confirm our previous

Illumina sequencing [25]: The 10 lines are about equally distant from each other in terms of
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sequence divergence (S1 Fig) and can thus be treated as unrelated individuals from the natural

population.

We genotyped F2 plants using the RNAseq reads (Methods C). Transcript reads can be sub-

optimal for genotyping owing to varying coverage per locus (expression levels differ among

genes) and because the representation of the two parental alleles within the RNA of heterozy-

gotes may be unequal (allele-specific expression). We address these difficulties by stringent fil-

tering of genes, using only about 37% as genetic markers. Next, we apply a Hidden Markov

Model (HMM) to each chromosome of each individual allowing marker specific genotyping

error rates (the emission probabilities of the HMM). The HMM leverages genetic information

across the chromosome, and particularly from neighboring genes, to call the genotype (ances-

try) at each locus [26,27]. Given the recombination rate of M. guttatus [27], a diploid F2 plant

has an average of ~1.8 crossover events per chromosome. Consequently, there are large

stretches of markers (usually hundreds of genes) between genotype transitions along chromo-

somes. Neighboring markers will (nearly) always have the same ancestry (homozygous for

767, heterozygote, or homozygous for the alternative parental line allele), which greatly simpli-

fies genotype inference. For the filtered dataset, we obtained posterior genotype probabilities

of>99% at virtually all marker loci.

After filtering the RNAseq read data, we obtained an average of 4,800 informative genetic

markers per cross (family). The HMM yields genetic maps for each family. The maps from dif-

ferent families are similar to each other by chromosome, and the average total genetic length

(1,260 centimorgans) is comparable to previously published maps of M. guttatus [27]. Also,

Fig 1. (A) A diagram of the replicated F2 design with the number of plants used after filtering in parentheses. Each “P” is an unrelated inbred line. 767 is

another inbred line derived from the same population, unrelated to the other nine P lines. (B) A photo of the plant (leaf number noted) at the developmental

stage when 2nd leaves were harvested. (C) The distribution of relatedness (twice the coefficient of coancestry) values from all pairwise comparisons of

individuals. The set of contrasts centered on 0.5 corresponds to F2 individuals of different families, while the contrasts centered on R = 1.0 come from intra-

family comparisons. Comparisons among plants of the same inbred line have R = 2.0 (genetically identical and fully homozygous).

https://doi.org/10.1371/journal.pgen.1011072.g001
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the maps exhibit the predicted pattern of recombination suppression over regions where large

inversions are known to segregate. Line 664 carries a large inversion on chromosome 6 [28]

and the map for this family exhibits recombination suppression over the predicted region

(1.22 to 8.57mb in the coordinates of the 767 genome assembly). The meiotic drive allele on

chromosome 11 [29] segregates in families 62, 502, 541, 664, and 909, and these maps exhibit

consistent suppression from coordinates 6.60mb to 17.62mb. As expected, this interval

includes the centromere. Interpolating from the genetic markers, we established a nearly com-

plete genotype matrix for eQTL mapping. For each gene measured for expression, we could

score the locus as homozygous for the reference line (767), homozygous for the alternative

line, or heterozygous. This gives us a genotype call specific to each expressed gene, which is the

cis eQTL in the Combined analysis.

Estimation of genetic variances and the contribution of specific eQTLs

Genetic variances are estimated by determining how phenotypic similarity increases with

genetic similarity. Estimation will be most effective when we can compare plants that range

from unrelated (R = 0) up to fully homozygous identical twins (R = 2). We calculated the relat-

edness using the genotype matrix for the 1,588 plants. The distribution of pairwise relatedness

values (depicted in Fig 1C) confirms that our crossing design produced the high variance in

relatedness that is necessary for accurate estimation of the genetic variances. At the low end,

where R = 0, there are 451,200 contrasts among unrelated individuals. These are plant pairs

from different inbred lines and contrasts of F2s to unrelated parental lines. The next most fre-

quent contrast is among F2 plants in different families (average R = 0.5), which are related

through shared inheritance of DNA from their common parent (767). F2 plants within a family

(average R = 1.0) can have alleles Identical by Descent through both parents. The variability in

relatedness around the modal points of 0.5 and 1.0 are due to the stochastic events of segrega-

tion and recombination in gamete formation that will make siblings more/less similar by

chance. Finally, there are several thousand contrasts of genetically identical individuals within

parental lines. These contrasts have R = 2.0 because line plants are completely homozygous

(the maximum for R is 1 when all plants are outbred).

We used simulations to choose the best statistic to estimate the contribution of individual

loci to genetic variation in expression (Methods F). In these simulations, we used the observed

genotype matrix as a framework with subsequent generation of expression levels, with and

without cis and trans eQTLs of varying effects. We tested the accuracy of three different meth-

ods: the least squares based Haseman–Elston (HE) regression [30] and two statistics derived

from the maximum likelihood fit of the linear mixed model: Vg[r2] and Vg[a] are described in

Methods D. Across a range of cases, all three estimators are nearly unbiased given our sample

sizes and genotype matrix. In other words, the average of estimates across simulations is close

to the true value of the parameter used to simulate data. However, when a locus contributes to

genetic variation, the variance among replicate simulations is much larger for HE regression

than for either Vg[r2] or Vg[a]. The variance for Vg[a] is marginally lower than for Vg[r2] (see

S3 Table). We chose Vg[a] to estimate the contribution of both cis and trans eQTLs to the

genetic variance of expression in the real data because it was the most accurate (Vg[a] has the

lowest mean square error).

The great majority of genes exhibit cis-regulatory variation with high

allelic diversity

In the Combined analysis, 91% of genes have a significant cis eQTL (FDR< 0.05; S4 Table).

The Cross-specific mapping identified 32,853 eQTLs over the 9 families, most (22,794) were
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cis to the affected gene. These estimates refer only to measured genes, those expressed in leaf

tissue and passing filters. The eQTL plot for four of the crosses (Fig 2) are typical of the full set

(S2 Fig), with the many cis eQTLs filling the diagonal of this plot. Gaps along the diagonals are

only present in centromeric parts of chromosomes where there are few genes. This is partly

due to filtering: We did not test genes with a mean Count Per Million < 0.5. Average

Fig 2. All significant eQTLs are reported by QTL (x-axis chromosomal locations) and affected gene position (y-axis) in four of the crosses (alternative

lines 502, 909, 541, and 1034). Blue/aqua points are cis eQTLs while red/pink denotes trans eQTLs (shade changes with chromosome). The vertical

“chimneys” highlighted by arrows are trans eQTL hotspots, the locations of which are unique to each cross.

https://doi.org/10.1371/journal.pgen.1011072.g002
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expression levels are lower for genes in centromeric regions (and for low recombination por-

tions of the genome generally; S3 Fig). A greater number of significant cis eQTLs emerge from

the Cross-specific analyses than the Combined analysis (22,794 > 11,818) but these numbers

are not comparable. Each gene is tested nine times in the former analysis (once within each

cross) but only once in the latter.

Genetic effect estimates are very similar between Cross-specific and Combined analyses.

When cis QTL effects are measured in standard deviations of the expression level, estimates

for the same locus/cross are nearly equivalent between identical Cross-specific and Combined

analyses: The correlation is 0.96 when including both significant and non-significant tests

(n = 9 crosses x 12,987 genes = 116,883 estimates; S4 Fig). This high congruence is noteworthy

given that (a) data transformations differ between pipelines, (b) the Cross-specific analysis

considers only F2 individuals while the Combined analysis also includes data from the homo-

zygous parental lines, and (c) the Combined analysis includes a random effect to absorb trans

eQTL effects while the Cross-specific does not. The strength of evidence (level of statistical sig-

nificance) for cis-regulatory variation is much stronger from the Combined analysis because it

integrates signal across families. However, the point estimates for allelic effects are remarkably

consistent (r = 0.96).

More important than the number of significant tests, we find that most of the additive

genetic variation in gene expression is explained by cis eQTLs. From the Combined analysis,

the mean values for VE, Vg(cis) and Vg(trans) were 0.828, 0.093, and 0.044, respectively. The frac-

tion of the genetic variation generated by the cis locus varies (Fig 3A), but Vg(cis) > Vg(trans) for

63% of genes. Here, Vg(trans) is estimated using the relationship matrix and represents the com-

bined effect of all trans acting loci on the affected gene. As expected, the strength of evidence

for a cis eQTL is positively correlated with Vg(cis) (S5 Fig). The residual variance, VE, is the

largest component for most genes where measurement error owing to finite sequencing depth

contributes substantially. Average read depth per gene is a strong positive predictor of test sig-

nificance, while average VE declines as coverage increases (S6 Fig). Both trends are expected if

expression levels are less accurately estimated at genes with lower coverages.

The cis eQTLs identified by our Combined and Cross-specific analyses are significant when

the overall expression of a gene differs among the three genotypes that segregate within each

family (the alternative homozygotes and the heterozygote). Because genotype is called at the

marker locus most proximal to the expressed gene, significant tests from this procedure are

often called “local eQTLs” [31]. Allele-specific expression provides an alternative method to

detect cis eQTLs [32] based only on data from heterozygous individuals. If cis DNA variation

only affects the expression of the physically linked gene (on the same chromosome), the “high

allele” should be over-represented in the mRNA produced by heterozygotes. In this experi-

ment, we have the genome sequences of all parental genomes and can distinguish alternative

alleles within the mRNA produced by heterozygous plants for 46,828 gene/family combina-

tions. In these cases, we see that whichever allele increases expression across all three genotypes

is usually over-represented in the mRNA produced by heterozygous plants (Fig 3B). This is the

signature of allele-specific expression. Given that both estimates (the additive effect on overall

expression and allele frequency within heterozygotes) are subject to substantial estimation

error, the high positive correlation (r = 0.83) provides a compelling corroboration of cis

eQTLs identified using local markers. This is illustrated by the subset of cases where the esti-

mated additive effect of the alterative allele on expression is lower than -0.5 or greater than 0.5

(and we can be confident of correctly inferring up or down regulation). In these cases, allele

frequency in the mRNA of heterozygotes deviates from 0.5 in the predicted direction in 99.6%

of 7,841 tests.
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Contradicting the assumption of additivity, about 20% of cis eQTLs exhibit some level of

dominance (the test for dominance yields FDR<0.05). However, dominance is nearly always

partial with heterozygote expression levels between the values of alternative homozygotes.

Dominance is quantified by the parameter d, where the mean expression of genotypes RR, RA,

and AA are m, m+a+d, and m+2a, respectively (m is the mean expression of individuals homo-

zygous for the reference allele (RR)). Partial dominance is implied if abs(d) < abs(a). For cis

eQTLs, 98% of point estimates for d and a satisfy this condition (Fig 3D). Partial dominance at

cis eQTLs is corroborated by the allele-specific expression data. If we regress the alt-allele fre-

quency in reads from heterozygotes (y-axis of Fig 3B) onto the estimates for both a and d
simultaneously, both are highly significant as positive predictors of allele frequency (p< 10−9

for each coefficient). The positive coefficient for d means that when the overall expression of

the heterozygotes exceeds the value predicted by additivity, there is a corresponding increase

in alt-allele frequency within the reads produced by heterozygous plants. When d< 0, this

Fig 3. (A) The distribution (across genes) of the fraction of the total genetic variance due to the cis locus is reported

for each of the 12,987 genes. Genes with negative Vg(cis) estimates are reported as 0. (B) The estimated effect of the

alternative allele (not 767) on total gene expression (across genotypes) is a strong predictor of allele frequency within

the reads produced by heterozygotes. The units for a (estimated additive effect) are standard deviations of expression.

(C) The distribution across eQTLs of the number of functionally distinct alleles per cis (blue) and trans (red) eQTL are

reported. (D) The distributions across genes of estimates for the scaled dominance coefficient (d/a) are reported for cis

and trans eQTLs. With no dominance d/a = 0 while -1 (or 1) implies that the alternative allele is fully recessive (or

dominant). The end categories bin all estimates that are less than -1.1 or greater than 1.1.

https://doi.org/10.1371/journal.pgen.1011072.g003
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frequency is reduced relative to additivity. Thus, fluctuations in allele-specific expression par-

allel dominance estimates.

The definition of “alleles” is different in multiparental mapping experiments (such as this

study) than in genomewide association studies. In the latter, alleles are typically biallelic SNPs.

Here, alleles are the distinct haplotypes carried by the founding parental lines in the vicinity of

each gene. In our initial model fit, we allowed the cis allele from each of our nine alternative

lines to uniquely differ from the allele carried by the reference line (767). From the point of

view of statistical testing, it is appropriate to allow each allele to have a unique effect on expres-

sion that is characterized by a distinct free parameter. In fact, our simulations indicate this pro-

cedure to be slightly conservative for detecting QTLs (Methods F). However, in terms of

characterizing QTL effects, this “full model” is overparameterized when fewer than 10 func-

tionally distinct alleles segregate. To address the number of functionally distinct cis alleles, we

applied the allele partitioning method of King et al. [33] to each gene. The typical result is an

allelic series with a median of 3 alleles per cis locus (Fig 3C). Some significant loci have only

two distinct alleles, but in this case, each allele is typically carried by multiple ancestral lines.

We can characterize allele number and relative frequency of alleles with heterozygosity:

H ¼ 1 �
P

q2
i , where qi is the frequency of the ith allele and the sum is taken over all alleles at

the locus. Across all cis loci (significant or not), the median H is 0.59 indicating high allelic

heterogeneity.

We used multiple linear regression to test if sequence variation in the vicinity of genes can

predict the strength of cis eQTL effects on expression. We measured variation within each of

three windows around each gene: the 1kb upstream of the gene start codon, the gene itself, and

the 1kb downstream. Within each region, we calculated nucleotide diversity (π) and a measure

of insertion/deletion frequency (U) as potential effectors of cis eQTL significance. U = 0.0 if

the ten lines are perfectly colinear over a region but increases toward 1.0 as indels accumulate

(see Methods B). Predicting the significance of cis eQTL effects on the full set of 12,897 genes,

all six predictors are positive, but only four are strongly significant (S5 Table). Cis eQTL signif-

icance increases most strongly with π within the genic region and with U for the upstream reg-

ulatory region. Indels in the genic and downstream regions have moderately positive effects on

cis eQTL significance, while nucleotide diversity in the upstream and downstream regions are

minimally important.

The characteristics of ascertained trans eQTLs are very different from cis

eQTLs

While less frequent than cis eQTLs, trans eQTLs are abundant: 10,059 significant tests across

all nine families in the Cross-specific analysis (Fig 1). A substantial fraction of trans eQTLs

occur in “hotspots” where a single locus effects the expression of many genes. Within each

cross, we clustered significant trans eQTLs if located within 2 centimorgans of each other

which distills all significant tests into 1,979 loci (S6 Table). The number of affected genes per

locus is usually low (median = 2), but we can identify 35 hotspots where the trans eQTL affects

the expression of 30 or more genes. In a few cases, hotspots in different families have roughly

similar genomic locations (S2 Fig), but since the affected genes are different, they are likely

caused by different mutations. For example, three different families (155, 664, and 909) each

have a trans eQTL hotspot within the first Mb of chromosome 1. However, the 68 affected

genes in family 155 are different from the 30 genes affected in family 664, and the 35 in family

909 are non-overlapping with either previous set.

In the Cross-specific analysis, 98% of the trans eQTL/affected gene pairs were ascertained

within only one family. This suggests low allelic diversity–a bi-allelic polymorphism with the
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minor allele carried by only one parental line. However, it is not tenable to assume the absence

of significance as absence of effect. To provide a meaningful contrast of allelic diversity at cis

and trans eQTLs, we estimated the effect of each trans eQTL considering all families simulta-

neously, essentially applying the Combined analysis model previously fit to cis loci. Across all

trans eQTL/affected-gene pairs, the Combined analysis indicates that trans eQTLs explain

about 10% of the genetic variance (Vg) on average. This is much less than the average cis con-

tribution to Vg (Fig 3A) and usually constitutes a minority of the overall Vg(trans) for genes.

There are two reasons for lower diversity at trans eQTLs than cis eQTLs. First, trans eQTLs

have a lower number of functionally distinct alleles per locus (median of 2 instead of 3; Fig

3C). Second, for a given allele number, the average heterozygosity is lower at trans than cis

eQTLs because the latter exhibit a more even distribution of alleles (Fig 4). At two allele loci, a

trans eQTL is more likely to be 1:9 than 5:5 for allele counts, while the reverse is true for cis

eQTLs. With three alleles, there are a greater number of configurations, but cis eQTLs are

over-represented in high heterozygosity categories (right side of Fig 4B) and trans eQTLs in

Fig 4. Panels A and B: The distribution of allele configurations for cis (blue) and trans (red) eQTLs for loci with (A)

two alleles or (B) three alleles. The bracketed numbers refer to (A) the counts of the minor and major alleles or (B) the

counts of minor, intermediate and major alleles. The allelic configurations are ordered left to right according to

increasing heterozygosity (H). Panels C and D: Examples of the distribution of expression levels (Box-Cox transformed

values used in the Combined analysis) per cis eQTL genotype (colored bars) or the overall distribution (inset for each

panel). Panel C is a case where the cis eQTL has two functionally distinct alleles (gene = MgIM767.04G000700.v1.1)

where five of the P lines carry the allele of IM767 (R) while the other four carry an alternative (A). Panel D is an

example with three functional alleles (gene = MgIM767.10G016500.v1.1) where all P lines differ from 767 with two

carrying allele A1 and the other seven carrying allele A2.

https://doi.org/10.1371/journal.pgen.1011072.g004
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the lower categories (left side). The differences in the distributions of cis and trans are highly

significant for both the two allele (X2 = 505, df = 4, p< 10−16) and three allele (X2 = 274,

df = 7, p< 10−16) loci. Comparisons beyond three alleles are not possible owing to absence of

trans eQTLs with high allele counts.

The partitioning of variation at eQTLs into functionally distinct alleles also illustrates an

interesting aspect of the overall expression distribution of genes. Hsieh et al [34] noted that

eQTL with major effects could generate a multi-modal distribution for expression–the distinct

modes corresponding to the means of different genotypes. In this experiment, we do observe

multi-modal distributions, but usually only when there is a large effect eQTL with only two

alleles segregating. This is illustrated by a comparison of two major cis eQTLs, with either two

(Fig 4C) or three (Fig 4D) distinct alleles. Inspecting the overall distributions (insets in fig-

ures), we see a clear bimodal distribution in the first case, but not the second. In either case, if

we subdivide plants according to cis eQTL genotype, the underlying distributions reveal the

cause of the difference. There is a relatively simple unimodal distribution within each cis eQTL

genotype for both genes. However, they separate more clearly in the two-allele case simply

because fewer genotypes (and thus fewer distributions) span the range of expression variation.

Genotypes with intermediate means (frequently heterozygotes) fill the “valleys” in the overall

distribution particularly with three or more alleles segregate at an eQTL.

The average Heterozygosity of trans eQTLs (H = 0.41) is only about two thirds that of cis

eQTLs owing to the differences in allele number/evenness. This is a large difference, but less

than suggested by literal extrapolation from the Cross-specific analysis where trans eQTLs typ-

ically showed in only one family. In the Combined analysis, the “typical” trans eQTL has the

minor allele present in two of ten lines. We obtain only one significant test in the Cross-spe-

cific analysis owing to sampling error and limited power (the Beavis effect [35]). In fact, there

are a small number of potentially important cases where the trans eQTL has high allelic diver-

sity. For example, MgIM767.11G072100.v1.1 (a MADS box transcription factor) is affected by

a QTL about 17.5 mb into chromosome 4 that segregates within four of nine families.

Considering the results from the perspective of the phenotype, we find that many genes are

affected by multiple trans eQTLs, both within and between families. Across all genes measured

for expression, the number of trans eQTLs ranged from 0 to 12. There is a strong positive rela-

tionship between the “trans heritability” (Vg(trans) as a proportion of the total variance in

expression) and the number of significant trans eQTLs identified for that gene in the Cross-

specific analysis (Fig 5A). For a given number of trans eQTLs affecting a trait, Vg(trans)

increases with the amount of genetic variance generated by these loci (F1, 6808 = 58.4,

p< 10−13). In other words, the amount of variation contributed by mapped trans eQTLs is a

strong predictor of the estimated Vg(trans) of a gene (which is the total contribution of trans

eQTLs, mapped or not). However, even in this subset of genes where we identified at least one

trans eQTL, the majority of Vg(trans) remains unexplained.

Allelic dominance at trans eQTLs is both more frequent and more severe than at cis eQTLs.

In the Cross-specific analysis, 60% of trans eQTLs are significant for dominance and abs(d) <

abs(a) in only 51% of cases (Fig 3D). This does not imply extensive over/under dominance

because loci with complete dominance will produce point estimates with abs(d) > abs(a)

about half the time owing to estimation error. We can test for over/under dominance by com-

paring the likelihood of the data with d unconstrained to the likelihood under complete domi-

nance of either allele. For cis eQTLs, this test provides only one gene with a compelling case

for over/under dominance: MgIM767.14G274100.v1.1, a pectin acetylesterase protein, is

highly significant for overdominance in three families and marginally significant in a fourth.

There are more trans eQTLs suggesting over/under dominance, but none rise to genomewide

significance.
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The contribution of trans eQTLs to genetic covariances

The additive genetic covariance between any two genes (CG) can be estimated simply by apply-

ing the Combined model analysis to the sum of expression at the two genes and then subtract-

ing estimates obtained from the fits to each gene alone (see Methods D). To characterize the

genomic distribution, we randomly paired each expressed gene with 10 other genes and esti-

mated GG, and the environmental covariance (CE), for each of these 64,930 trait pairs. GG and

CE each exhibit distributions with a roughly equal mixture of positive and negative values (S7

Fig). With expression levels standardized to unit variance, we can use squared covariances to

measure the magnitude of genetic and environmental associations. For C2
G, the genomewide

mean is 0.000983 (SE = 0.000007), while the mean for C2
E is 0.010545 (SE = 0.000081). These

low values reflect the fact that most genes are uncorrelated with the bulk of the transcriptome

(thousands of pairwise comparisons), even if strongly correlated with a subset of other genes

(tens to hundreds of comparisons).

We tested the effect of trans eQTLs on co-expression by identifying all pairs of genes

affected by the same trans eQTL. Over 305,809 gene pairs, the mean C2
G is 0.001639

(SE = 0.000007), which is the 67% greater than the genomewide average (t = 65.6, p< 10−9;

Fig 5B). This confirms the prediction that trans eQTLs contribute to co-expression. While

most gene pairs were specific to one cross, there were 621 pairs mapped in two families and 4

pairs mapped in three families. The magnitude of the genetic covariance (mean C2
G) is much

higher in these multi-family gene pairs (F2,305806 = 2848, p< 10−9; S8 Fig). This is also expected

given that intermediate allele frequency polymorphisms should generate more covariation

than rare allele polymorphisms. An unexpected result is that C2
E is also inflated in trans eQTL

pairs where the mean of 0.014266 (SE = 0.000053) is 35% greater than the genomewide average

(t = 38.4, p< 10−9).

The standard approach to eQTL mapping is to progress gene by gene, predicting expression

of each from genotype (as we did here, Figs 2–4). The obvious extension for correlations is to

consider genotype effect on trait pairs. This is not a standard analysis, perhaps because the

number of distinct gene pairs is very large. Instead, researchers typically apply methods such

as principal components analysis (PCA) or network analysis [36] or sparse factor analysis [37]

to compress correlated expression patterns into a tractable number of aggregate traits (PCs or

factors or modules). For the present dataset, we applied PCA to the transcriptome and tested

Fig 5. (A) Trans heritability, the fraction of the variance in expression explained by Vg(trans), is predicted by the

number of trans eQTLs affecting a gene. Number in parentheses is the count of genes in each category and the

rectangle is the 95% CI on the mean. (B) The frequency distributions (density) for genetic covariance between genes

affected by the same trans eQTL and all gene pairs.

https://doi.org/10.1371/journal.pgen.1011072.g005
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for genetic effects on the resulting principal component scores. PCA combines the expression

values from correlated genes to define PCs that are linear combinations of all expressed genes.

After defining PCs, we applied our Combined model analysis to each, treating them as quanti-

tative traits. We determined the genetic and environmental variance in each PC and mapped

loci affecting these composite traits (pcQTLs).

We found that the first 50 principal components explain nearly half of the total variance in

expression of the full set of 12,987 genes. Importantly, the average heritability of PC scores is

considerably higher than for individual genes (the mean is 0.25 for the first 50 PC and 0.34 for

the next 50; S7 Table). We mapped 196 pcQTLs that yield test p-values less than 10−5 (Fig 6

and S8 Table). These co-localize with the major trans eQTL hotspots. Of the 35 hotspots, 24

have one or more pcQTLs within 400kb (which is +/- 2 centimorgans on average in the F2

populations). Methods G provides a more quantitative contrast by considering the loadings of

each PC on individual genes. This analysis indicates that the pcQTLs are absorbing both cis

and trans eQTLs to some extent (Methods G). It is also noteworthy that the dominance test is

usually more significant than the additive test on pcQTLs (Fig 6), which mirrors the prevalence

of dominance for individual trans eQTLs (Fig 3D).

Discussion

On average, the cis regulatory region of genes explains about two thirds of the genetic variance

in expression of genes within leaf tissue of Mimulus guttatus (Fig 3A). This is an unexpectedly

high proportion. Reviewing studies from a number of species, Liu et al [11] report that Vg(cis)

is typically about one third of the genetic variance, half our estimate. It is difficult to know if

the Mimulus estimate is atypically high, because while large Vg(cis) values are routinely

obtained in eQTL mapping experiments (e.g. [31,33]), researchers usually only report esti-

mates for genes with a significant cis eQTL. Our estimate and the summary by Liu et al [11]

average over all measured genes. Methodological issues aside, a basic feature of M. guttatus
may be relevant to its high cis regulation. This species exhibits remarkably high gene sequence

Fig 6. The strength of evidence (LRT total) is reported for each of the 196 pcQTLs with test p-values< 10–5. Total

LRT is the sum of the additive test LRT1 (yellow) and the dominance test LRT2 (red).

https://doi.org/10.1371/journal.pgen.1011072.g006
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and insertion/deletion (indel) variation, even within local populations [38]. In fact, it is diffi-

cult to reliably map Illumina sequencing reads to intergenic regions of the M. guttatus refer-

ence genome where indel variation is very high [39]. Such variation could affect gene

expression insofar as binding of regulatory elements to the DNA surrounding genes affects

expression.

Speaking to the role of sequence variation, we find that genes with elevated indel variation

upstream of the gene start codon and/or high nucleotide variation within the gene body have

higher Vg(cis) than do genes with lower variation (S5 Table). These patterns have at least two

non-mutually exclusive explanations. First, genes with high variation in general might be more

likely to exhibit differences in the regions that are directly relevant to gene regulation [40].

This is plausible but difficult to evaluate given that we cannot yet bioinformatically identify

regulatory sequences (promoters, enhancers, etc.) in M. guttatus, but sequence variation in

promoter regions has been correlated with the magnitude of cis eQTL effects in Arabidopsis
[41]. Second, the level of sequence variation around a gene could be indicative of the history of

natural selection at a locus. Genes under stronger purifying selection, or those that have

recently experienced a selective sweep are expected to exhibit lower sequence variation. Such

genes might also tend to exhibit lower standing variation in cis regulation. In corn, rare vari-

ants within cis regions are associated with ‘dysregulation’ of gene expression [42], although

this is not apparent in Mimulus [43].

Allelic heterogeneity and the allele frequency spectrum at eQTLs

Brown and Kelly [43] recently published a genomewide association study of gene expression

variation (hereafter called the eGWAS) within this same IM population of M. guttatus. They

examined a different plant tissue (flower buds instead of leaves), used a different experimental

design (homozygous lines instead of lines intercrossed to produce F2 individuals), and

employed a different allocation effort (the eGWAS scored 151 lines with few individuals per

line, while here we have 10 lines with high replication of segregating variation between lines).

Despite these differences, the current experiment amplifies a key conclusion of the eGWAS:

There is a striking difference in the allele frequency spectrum between cis and trans acting var-

iants. “Cis-SNPs” have intermediate frequencies relative to the overall genomic distribution

while “trans-SNPs” exhibit a rare-alleles model. The former is consistent with balancing selec-

tion on cis eQTLs while the latter suggests purifying selection on trans eQTLs [44,45].

The high allelic heterogeneity documented in the present experiment suggests that the

eGWAS may have actually underestimated the level of variation at cis loci. The eGWAS tested

biallelic SNPs rather than allelic series of haplotypes. The maximum possible heterozygosity

(H) with two alleles is 0.5, which is much below the average H for our cis eQTLs which usually

segregate 3–4 alleles per gene (Fig 3C). The regulatory regions of our founding lines are haplo-

types that differ in both SNPs and indels at many positions. Closely linked variants exhibit

linkage disequilibrium in the IM population (see S2 Table in [39]) aggregating mutations at

distinct positions into functionally distinct alleles. This is an emerging empirical trend: Multi-

parental mapping populations in both plants and animals find that QTLs are best described as

allelic series and not binary alternatives [33,46].

We find that trans eQTLs have lower diversity than cis eQTLs, which corroborates the cis/

trans difference in allele frequency discovered in the eGWAS. In truth, the current experiment

overestimates the amount of variance generated by individual trans eQTLs because we only

estimated the variance contribution of trans eQTLs that emerged as significant in the Cross-

specific analysis. This is a simple manifestation of the Beavis effect [35], which does not apply

to our cis eQTL because we could include all cis-loci in our estimation of effects (loci do not
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have to be discovered as significant to be included). Even with this inflation of importance, our

mapped trans eQTLs explain only about 10% of the genetic variance in their affected genes on

average. Most of Vg(trans) remains unexplained and thus represents the aggregate contribution

of loci with effects below our detection limit.

Ascertainment also implies that we are overestimating heterozygosity at trans eQTLs. The

eGWAS discovered many trans SNPs where the minor allele segregates at about 5% in the IM

population (see Fig 2 of [43]). In the present design, we lose about half such loci just because

the minor allele is not sampled into any of the ten parental lines. When such an allele is cap-

tured, its frequency in the experiment (at least 10%) is twice that in nature, which effectively

doubles the heterozygosity estimate. Our estimation procedure is unbiased in the usual statisti-

cal sense (Methods F): Averaging over all trans-acting loci, underestimates (loci where we fail

to sample the rare allele) will cancel overestimates (loci where we do sample the allele) yielding

the true heterozygosity on average. However, since we always focus on the significant tests

after the experiment is completed, an inflated heterozygosity estimate is inevitable.

The multiparental mapping design enables the discovery of trans hotspots

and the cis/trans difference for genetic dominance

A major advantage of multiparental mapping is that it can give a much better examination of

rare alleles than GWAS [47]. GWAS typically have low power for rare alleles, alleles carried by

few individuals in the experiment. As noted above, most rare alleles are not sampled into mul-

tiparental designs, but for those that are, there is high replication in measured individuals. The

previous eGWAS [43] found many trans eQTLs but no hotspots. It is possible that the differ-

ence from the present study, where hotspots were evident in each cross, is biological (e.g. the

bud transcriptome has a different architecture than the leaf), but a statistical explanation is

more plausible. Because trans-acting alleles tend towards rarity, the minor allele was usually

present in only 5–15 plants of the eGWAS. In this situation, a locus affecting many genes will

yield genomewide significant tests on a minority of its targets just due to limited power. Most

of the rare alleles present in the eGWAS were not sampled into the parental lines of this study.

However, those included are likely carried by over 100 plants which enables reliable detection

of trans effects.

To accurately estimate dominance at a QTL, we require substantial representation not just

of alleles but also of diploid genotypes. Most multiparental mapping populations consist of

inbred lines, which allows high replication of known genotypes. The replicated F2 design

involves crosses among lines, not only to produce mosaics of the parental genomes (as is true

of Recombinant Inbred lines e.g. [46]), but also to generate QTL heterozygotes. Owing to this

feature, we find a striking difference in dominance between cis eQTLs, which tend toward

additivity, and trans eQTLs that typically exhibit dominance (Fig 3D). The molecular biology

of gene expression predisposes cis eQTLs to additivity. If each cis allele contributes indepen-

dently by affecting only the linked gene copy, then additivity of overall expression results from

a simple dosage effect. This logic does not apply to trans acting loci, but it is not clear why they

should be so strongly skewed towards strong dominance at most loci. About 60% of trans

eQTLs yield an absolute value for d/a that is greater than 0.75, which means that the heterozy-

gote is closer to one of the homozygotes than to the additive midpoint.

While certainly more nearly additive than trans eQTLs, we can reject pure additivity of

gene action at over 20% of cis eQTLs. At these loci, heterozygote expression is nearly always

intermediate (Fig 3D), but often closer to one homozygote than the other. A subtle deviation

from the midpoint is expected given that we impose a non-linear transformation on read

counts prior to estimating allelic effects. For example, the log2 transform, which is fashionable
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in gene expression studies, will tend to pull the heterozygote expression slightly towards the

homozygote with higher expression at an additive locus. More substantial deviations suggest a

feedback mechanism where expression of one allele is affected by the other. Autoregulation,

which is well established in plants [15], provides one such mechanism. For example, transcrip-

tion factors can increase or decrease their own transcription level by binding their own pro-

moter region. However, sequence differences in either the protein or the regulatory region

could direct the feedback (enhancement or suppression) more to one allele than the other.

Trans eQTLs and genetic correlations in gene expression

The quantitative genetic summary of gene co-expression is the “G matrix” [48]. Each of the n

expressed genes is represented by a row and column in an n x n dimensional matrix with the

additive genetic variances in expression on the diagonal. The additive genetic covariance of

two genes is reported in the off-diagonal matrix elements corresponding to these rows and col-

umns. The G matrix for the transcriptome is expected to be “sparse” relative to that for mor-

phological traits. Morphological traits that emerge from common developmental processes

routinely exhibit moderate to high correlations. In contrast, while individual genes may inter-

act strongly within “expression modules” [49], we expect most interactions to be weak or at

least diffuse. Consistent with this expectation, we find that genes typically have a low additive

genetic covariance (CG) with most other genes (grey in Fig 5B). Our experiment shows that cis

eQTLs are the primary determinant of the G matrix diagonal (Fig 3A) while mapped trans

eQTLs contribute incrementally to genetic correlations in expression. The latter effect is subtle

for individual loci (Fig 5B), which may reflect the fact that our mapped trans eQTLs explain a

minority of the genetic variation generated by trans acting loci.

Given the high dimensionality of our G matrix (there are over 84 million distinct off diago-

nal terms), we applied principal components analysis (PCA) to the transcriptome and then

mapped QTLs for the PC scores (pcQTLs). For a plant, a PC score is a linear combination of

the standardized expression levels at each gene. The weights (loadings) differ among the PCs,

but in our case, each PC is strongly influenced by hundreds to a few thousand genes (S9

Table). Thus, pcQTLs likely affect many genes, although the effects on individual genes may be

modest and below our detection limit for individual trans eQTLs. That said, there is a clear

indication that pcQTLs “capture” some of the effects of our mapped eQTLs, both cis and trans.

This is simply because the PC affected by a pcQTL tends to have higher loadings on genes with

genomically proximal eQTLs (Methods G). The association with trans eQTLs is stronger than

with cis. Also, both pcQTLs and trans eQTLs show a much stronger signal of genetic domi-

nance than do cis eQTLs (Figs 3D and 6).

PCA is a classic tool in quantitative genetics. It is applied directly to correlated traits to

obtain uncorrelated predictors of fitness [50] and also to characterize the structure of the G

matrix [8, 51, 52]. PCA is also used in RNAseq experiments, often for data visualization but

sometimes as a data cleaning tool to remove “confounding factors.” If an environmental vari-

able (say temperature) influences the expression of many genes, the failure to control for this

variable can reduce the power to detect treatment effects. If the leading principal components

‘absorb’ the effects of unmeasured variables, the inclusion of PC scores as covariates can

remove noise and improve power. Our results are cautionary with respect to this approach if

genotype is the treatment. Genotypic differences generate a correlated response across genes.

Pleiotropy can thus be (partly) responsible for co-expression patterns that determine principal

components. In this experiment, we found that PC scores actually have a higher genetic deter-

mination than individual genes on average (S7 Table). To statistically remove PCs before ana-

lyzing individual genes can thus eliminate signal (trans eQTLs) as well as noise.
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Concluding remarks

Evolutionary inferences from genetic experiments always depend on sampling, on where

genotypes come from. Multiparental mapping populations are typically created from world-

wide collections [46,47,53,54], a strategy designed to maximize genetic diversity. Most eQTL

experiments that have been done in plants are based on broad geographic samples or on

crosses between genotypes chosen specifically because they exhibit interesting (or agricultur-

ally important) phenotypic differences. In these experiments, the frequency of alternative

alleles within the mapping population will be determined by the chosen parents, as will any-

thing that depends on these frequencies such as QTL variances. If parents are sampled across

natural habitats, then genetic variants responsible for local adaptation will segregate in the

mapping population. In contrast, experiments estimating quantitative genetic (co)variation

are typically based on a random sampling of genotypes from a specific population. This

ensures that allele frequencies in the mapping population are representative of, and informa-

tive about, the ancestral population. There are fewer studies of this kind, but recent work in

both Capsella grandiflora [45] and Populus tremula [55] have estimated the contribution of

individual loci to the standing genetic variance in gene expression.

In this experiment, we sampled parental genotypes from one natural population (Iron

Mountain) with the purpose of estimating features of that population. This is very large popu-

lation that reproduces mainly by outcrossing (at a rate of over 90% in most years [56,57]).

Moreover, because of very high inbreeding depression [58], adult plants are almost entirely

outbred at Iron Mountain. We founded this experiment from a collection of inbred lines made

from randomly sampled Iron Mountain plants and previous sequencing confirms that these

line population is representative of the ancestral population in terms of allele frequencies

[25,39,43]. These allele frequencies thus reflect the balance of evolutionary processes (selection,

migration, drift) at the Iron Mountain location. The high variation at cis eQTLs suggests that

selection is maintaining variation at this local scale [43]. Field studies at Iron Mountain

directly measuring selection on genetic variants [25,59], as well as longer term studies measur-

ing temporal changes in allele frequency [39], suggest that antagonistic pleiotropy and tempo-

rally fluctuating selection are both acting as selective agents that maintain polymorphism.

Trans eQTLs have lower allelic diversity than cis eQTLs and a greater contribution of

uncommon alleles. However, the aggregate of evidence from the current experiment and the

previous eGWAS suggests that these relatively “minor” alleles segregate in the 1–10% range

within Iron Mountain. This is considerably higher than the expected frequency of uncondi-

tionally deleterious alleles, which are likely to be less than 1% in a large population. The scale

of sampling is a key consideration here. An allele that is uncommon within Iron Mountain,

perhaps because it is usually disadvantageous under local environmental conditions, may be

predominant in other populations. As in most widely distributed species, local adaptation is

very common in M. guttatus (e.g. [60,61]). If trans eQTLs are important to local adaptation in

M. guttatus, we predict that the allele frequency spectrum for trans eQTLs will shift when we

apply the same experimental design to a species-wide sample of parental genotypes.

The characterization of gene expression in terms of genetic variances and covariances is

necessary to predict the response to natural selection. Field experiments have demonstrated

rapid evolution of gene expression in response to selection [62–64]. From one generation to

the next, the change in mean expression levels under selection can be predicted from the cur-

rent G matrix without any information on the genetic architecture of expression variation

[65,66]. However, the rate that G matrix elements change is dependent on how eQTLs com-

bine to determine genetic (co)variances. Our finding that a major locus, the cis eQTL, explains

much of expression variation suggests that the G matrix will be malleable on ecological time

PLOS GENETICS Genetics of gene expression in Mimulus

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011072 April 11, 2024 17 / 31

https://doi.org/10.1371/journal.pgen.1011072


scales. Shifts in allele frequencies at major QTLs rapidly change genetic variances and covari-

ances [6,67]. The usual view is that selection eliminates genetic variation, which should occur

rapidly if fixation at one gene eliminates much of the variation. However, with the temporal

fluctuations evident at Iron Mountain, variation can persist even with strong selection [68,69].

The finding of high allelic diversity at eQTLs further complicates G matrix dynamics, par-

ticularly when considering genetic covariances. With two alleles and additive gene action, we

can describe a locus as either positive or negative with respect to the covariance of two affected

traits. If the first allele increases expression at two genes, the alternative necessarily has a nega-

tive effect on both (because effects are defined by contrast between alleles). With multiple

alleles, this is no longer assured. With four alleles, all directions for pleiotropic effects could be

evident (positive/positive, negative/negative, positive/negative, and negative/positive). The

extent to which allelic heterogeneity generates complex pleiotropy is currently unclear, making

it an important target for future experimental work.

Methods

Each of the sections below reference computer programs for analysis. All software developed

by others, including standard bioinformatic tools such as Salmon [70] and Gemma [23], are

reported as used. Most of our analyses were completed using custom programs written in

Python (v3.7). These programs are provided in S1 File along with “Key_to_programs.docx”

which describes their use.

A. Study system, experimental protocols, RNA and DNA extractions,

RNAseq library preparation, and sequencing

As parents, we used inbred lines of the yellow monkeyflower, Mimulus guttatus (syn Ery-
thranthe guttata, Phrymaceae) extracted from the Iron Mountain (IM) population in the Cas-

cade Mountains of Oregon (44.402217N, 122.153317W; [56]). This population is

predominantly outcrossing with little internal population structure [71]. In 2018, Troth et al.

[25] sequenced whole genomes of 187 IM inbred lines. After selecting one of these lines (767)

as the “reference” (which is common to all crosses), we sampled the nine alternative lines sub-

ject to the condition that they were fully unrelated to 767 and each other. Relatedness was

based on genomewide pairwise nucleotide diversity (π) from the Illumina sequencing of these

lines [25]. The equidistance among the lines is confirmed by the subsequent de novo assembly

of each line from long read sequencing data (described below, see S1 Fig).

We crossed each alternative line to 767 with the latter used as the pollen donor (Fig 1A).

We grew a single F1 plant from each cross and self-fertilized this individual extensively to pro-

duce>1,000 seeds. We grew the F2 plants along with members of each parental line in four

temporally overlapping cohorts using standard greenhouse conditions [43], about 500 plants

per cohort. Each family was grown in two cohorts and the IM767 line plants were grown in all

four cohorts. Daylength was kept at 16 hours (supplemental lighting on at 6am, off at 10pm)

throughout the experiment. We collected whole leaves from the 2nd leaf pair as soon as the

third leaves were>1cm long (Fig 1B) and immediately flash froze the tissue in liquid N2. All

leaves were collected between 10am and noon to control circadian rhythm effects on expres-

sion. RNA was extracted after disrupting the frozen leaves with metal beads using a bead beater

in RLT and β mercaptoethanol solution using a Qiagen RNeasy plant mini kit (Qiagen)

according to manufacturer’s instructions (without the optional DNase step). All samples were

eluted in 60 μl RNase-free H2O.

We made RNAseq libraries using QuantSeq 3’ mRNA-seq Library prep kits (Lexogen) at

quarter volumes. We used four i5 primers (Lexogen), which along with the 96 i7 primers of
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the kit, allow barcoding of 384 samples per sequencing run. Each batch of 96 samples from

one run of the protocol was pooled in equal volumes and checked for fragment size distribu-

tion using an Agilent TapeStation (Agilent, Santa Clara, CA, USA) and quantified using Qubit

(Thermo Scientific) at the KU Center for Genomics. Four such batches, each with different i5

primers, were pooled equimolarly for a sequencing run. Sequencing was performed at the KU

Center for Genomics on a NextSeq 2000 to obtain 75bp single end reads. For samples with low

yield in sequencing, we remade libraries from the original RNA extraction and sequenced the

remade libraries.

B. de novo assembly of parental genomes and annotation

From plants of each parental line, we extracted DNA using a modified PacBio protocol for

high molecular weight DNA extraction using 5 g leaf tissue as starting material. The full proto-

col is available as S2 File. After confirming high molecular weight using an Agilent TapeStation

(Agilent, Santa Clara, CA, USA), we sent the extracted DNA to the University of Georgia

where Sequel II CLR libraries were prepared and sequenced according to the manufacturer’s

instructions. We extracted fasta files from the PacBio raw data (SMRT Link XML) using the

ccs and bam2fastq commands from smrtools v9.0.0.92188 (PacBio). We assembled genomes

using canu 2.1.1 [72] with options genomeSize = 430m, correctedErrorRate = 0.035, utgOvlEr-

rorRate = 0.065 trimReadsCoverage = 2 trimReadsOverlap = 500. The resulting assemblies

were reduced to haploid assemblies using purge_dups [73], and were scored for quality using

BUSCO v3.0.2 [74] and the embryophyta_odb9 dataset. For the data analysis of this study, we

used the genome assemblies of 767 and 62 produced by the Joint Genome Institute ([24], used

with permission). Our Pacbio/Canu assemblies were used for the other eight lines.

We used Liftoff [75] to transfer the annotation of the 767 assembly onto the other genomes.

Given an annotation file (gff3) from each assembly, we identified orthologs of each 767 gene in

each alternative build. Not all 767 genes were successfully located in the other assemblies and

so we focused on the 12,987 genes discovered in all lines. These genes also passed the mini-

mum average expression level described below. We extracted the sequence of these genes in

each build to create a line specific transcriptome for read mapping. To score differences in the

nucleotide sequences among our assemblies, we used Mummer 3.0 [76] and SVMU [77] as

described in Program Set 1 of Key_to_programs (S1 File).

From the output files, we extracted all correctly aligned positions between genomes. We

scored SNPs and indels (which were enumerated as gaps in 767 relative to the alternative

genome and gaps in the alternative relative to 767) in each gene and in the 1kb upstream of the

start codon and downstream of the gene end. For each interval, we calculated nucleotide diver-

sity (π) as the fraction of aligned positions that differ in nucleotide and U = (total bp–aligned

bp)/ total bp. If the two sequences are perfectly colinear (no indels) then total bp = aligned bp

and 1 with 0. U increases towards 1 as the region fills with indels and unalignable sequence.

This yields six statistics for each gene (π and U for each of the three intervals), which we used

as predictors of the LRT1 test statistic for a cis eQTL. We standardized each predictor (to

mean zero and variance 1 across all genes) and then applied multiple linear regression using

Minitab v19 to produce S5 Table.

C. Read mapping, genotype calling and scoring expression levels

We trimmed the RNAseq reads with Trimmomatic [78] and checked for contamination or

mislabeling using custom python scripts (S1 File) that estimated the relatedness of all among

samples including the parental lines. After eliminating dubious samples (low sequencing

depth or questionable family assignment), we retained data from 1588 plants for subsequent
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analysis. We used Salmon v1.10.0 [70] to quantify gene expression. To remove bias caused by

preferential mapping of alleles, we mapped the F2 individuals from each family to a composite

genome including the (haploid) genome and transcriptome of each parental line. We excluded

any gene that displayed aberrant mapping of reads from the parent line plants. Specifically, we

required that reads from the inbred line plants (which are homozygous for a known parental

allele at all loci) map specifically to the allele from that line (in which case the marker is infor-

mative for genotype as well as transcript level analysis) or that the line alleles map equally well

to each allele. Only genes in the former category were amenable to allele specific expression

analyses.

Within each cross (family), genotyping was based on the RNAseq data from the subset of

genes where reads reliably map to each parental allele (identifying their origin). We used the

count of reads to each parental allele to make a putative call within each marker locus (RR, RA,

AA). These calls are error prone owing to low read counts at many loci (lowly expressed

genes) and allele specific expression (which makes heterozygotes resemble the homozygotes

associated with higher expression). Thus, we treat these putative calls as the “emitted states”

with the true genotype treated as the latent states of a Hidden Markov Model (HMM). The

HMM estimates the genotype of each F2 plant for each chromosome and is implemented

using a series of python programs revised from the GOOGA pipeline [27]. The model esti-

mates marker-specific genotyping error rates (which determine emission probabilities) and

the recombination rates between all adjacent markers (which determine the transmission

probabilities of the Markov Chain).

Given maximum likelihood estimates for all parameters, we extract the genetic map for

each cross and the posterior genotype probabilities at each marker. The locations of 33,302

recombination events across 1,373 F2 plants is reported in S10 Table. The resulting genotype

matrices are nearly complete given that the posterior probabilities for the most likely genotype

at each marker are (almost) always greater than 0.99. To produce a genotype matrix with calls

at each expressed gene, we interpolated calls from the scored markers that were immediately

upstream and downstream of any gene not included in the HMM estimation (these are all

genes without informative markers for parental assignment of reads). When adjacent markers

differed owing to a recombination event, intermediate genes were scored as unknown geno-

type. Finally, we calculated the relatedness matrix using pairwise comparisons among all 1,588

plants. The coefficient of coancestry at each marker is determined simply by the extent that the

two individuals share alleles from the same parent line given our assumption that parental

lines are unrelated. The overall relatedness between two plants (twice the coefficient of coan-

cestry) is just an average across all loci. These programs to infer genotypes and relatedness (as

well as those used for other aspects of the data analysis) are contained in S1 File with an outline

describing the sequence that programs are executed and the inputs/outputs for each step.

To obtain the phenotypes (the total expression of each plant at a gene), we summed the

reads mapped to each allele of a gene within each plant. Lowly expressed genes, those with a

mean expression less than 0.5 count per million, were not considered for further analysis. For

the Cross-specific analysis, we estimated the mean-variance relationship using Voom [79].

Voom also generated a weight for each observation considering the growth cohort and Cross

as factors. First, a DGEList object was generated in edgeR [80] from the raw counts, which

included information on library size per individual using the calcNormFactors command.

Then the DGEList object was Voom transformed given a matrix of cohort + group. The result-

ing normalized counts and weights were exported for the Cross-specific analysis. The Com-

bined analysis used the standardized counts per million for each gene of each plant directly. A

Box-Cox transform was then applied, gene by gene, and finally standardized the transformed

counts to unit variance.
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For alleles specific expression analysis, we identified all genes in each cross where the total

expression could be partitioned into reads contributed by each parental allele in heterozygotes.

At such genes, we assembled a vector of count pairs (reads from the reference, reads from the

alternative line) for all plant heterozygous at the cis locus. We treat these counts as samples

from a beta-binomial distribution. We determine the maximum likelihood across all plant

under the null model enforcing α = β (which implies no allele specific expression on average,

equal expression of both parental alleles) to the more general alternative model α 6¼ β (either

parental allele can be overrepresented). The beta-binomial is superior to the usual binomial

model for counts because it allows over-dispersion. However, we find that our MLE for the fre-

quency of the alternative allele in heterozygote RNA (y-axis of Fig 3B) from the beta-binomial

is usually very close to the “naïve estimate”, which is the simple average of A/(R+A) across all

heterozygous plants.

D. Testing procedures

For the Cross-specific analysis we used rQTL v 1.60 [81] to detect QTLs for the normalized

expression of each gene using the scanone function with cohort as a covariate and taking the

weights into account. The analysis was run separately on each family, and we extracted the

LOD score, additive and dominance effects, and their standard errors for each marker. P-val-

ues were obtained from permutations specific to each gene using the scanone command of rqtl

and the marker regression method. For all trans eQTLs, the location of the eQTL is reported as

the location of the LOD peak. However, for LOD peaks near the expressed gene, we tested the

marker closest to that gene (oftentimes the marker is the gene itself). The marker was consid-

ered proximal if within the LOD confidence interval from rQTL and also less than 1mb distant

from the gene start site. We called a cis eQTL only if the LOD at the gene location was signifi-

cant (exceeded the genomewide threshold). If significant, we extracted the estimates for effect

(a and d) from this location.

For the Combined analysis, we fit a linear mixed model using maximum likelihood to the

entire dataset for each gene, considering three different models in sequence. The calculations

were performed using Gemma [23] as described in Program Set 3 of the Key_to_programs (S1

File). The fixed effects in the “null model” are cohort and the random effect absorbs all genetic

effects on expression (the relatedness matrix determining the (co)variance matrix). This

Model 0 yields a log-likelihood (LL0) and two variance estimates, Vg and Ve. Vg is the (whole

genome) additive genetic variance in expression while Ve is the residual variance (environ-

mental effects, measurement error, etc.). We next test for a cis eQTL by adding the genotype at

this locus into the vector of fixed effects. We first consider purely additive gene action at the

cis locus: Model 1 adds nine parameters, the effects of each alternative allele (specific to each

line) that is crossed to 767. For all plants from cross z, the phenotype is incremented by az for

heterozygotes and by 2 az for homozygotes for the allele from parental line z. Model fitting

yields the log-likelihood (LL1), estimates for all nine az values, and the variance components,

Vg and Ve. In the fit of model 1, Vg is the genetic variance due to trans eQTL since any cis-

locus effect has been absorbed into the fixed effects. The likelihood ratio statistic, 2(LL1—LL0),

is compared to a chi-square distribution with 9 df to test for an effect of the cis-locus. Finally,

Model 2 allows dominance at the cis eQTL with genotypic values of 0, az+dz, and 2az for refer-

ence homozygotes (767), heterozygotes, and alternative homozygotes (line z), respectively (the

rQTL model used in the Cross-specific analysis). Model 2 adds nine parameters, so the likeli-

hood ratio test for dominance, 2(LL2 –LL1) is compared to a chi-square distribution with 9

degrees of freedom. We first applied models 0, 1, and 2 to each gene using the cis locus as the
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genotype. Later, after identifying affected gene / trans eQTL pairs from the Cross-specific anal-

ysis, applied these models to each pair using the trans eQTL locus as the genotype.

From the ML model fits, we can estimate the genetic variance generated by the cis eQTL in

two different ways. First, we can subtract the Vg from model 1 (which includes only trans

effects) from the Vg of model 0 (which includes both cis and trans effects). This estimator,

denoted Vg(r2), is similar to the ‘variance explained by the QTL’ method that has been applied

to multi-parental mapping populations of Drosophila [33] and mouse [31]. A second estima-

tor, Vg(a), is calculated from the estimated additive effects and their standard errors:

VgðaÞ ¼ 2ðs2a � �se2
aÞ

where s2a is the variance among the nine az estimates and �se2
a is the average of squared standard

errors on those estimates. This formula is the simple variance (s2) among az values minus the

variance generated by estimation error. The az estimates can be treated as unrelated because

each is calculated from genotype/phenotype association within distinct families, The simula-

tions described below indicate that both Vg(r2) and Vg(a) are (nearly) unbiased but Vg(a) has

a lower mean square error. In other words, for this design Vg(a) is closer to the true variance

on average. Both estimators perform substantially better than the HE regression approach

[30], which also is nearly unbiased but has much larger mean square errors.

The alternative models (1 and 2) described above are fully unconstrained–each alternative

line can be uniquely different from 767. This is necessary if variation is described by an ‘infi-

nite alleles’ model [82], but over-parametrized if few alleles segregate at the cis locus. All the

possible configurations, ranging from two to ten distinct alleles at a QTL, can be testing by

first ranking the az estimates from most negative to most positive and then considering all

“splits” that subdivide these estimates into discrete bins [33]. We determined the maximum

likelihood for all 511 distinct configurations for each gene. For a given number of partitions

(e.g. two partitions equals three alleles), we selected the case with the highest likelihood. Start-

ing with the 2-allele case, we accept increases in the allele number (rejecting the simpler model

by accepting an additional parameter) only if twice the likelihood difference is greater than

3.84 (which is the p<0.05 threshold for a chi-square test with 1 df).

The linear mixed model was applied in two other analyses. To test cases of potential over/

under dominance, we compared the likelihood of the data with d unconstrained (Model 2) to

the likelihood under complete dominance of either allele. This has the same number of param-

eters as Model 1 but with a different assignment of genotype effect to heterozygotes. Second,

we applied Model 0 to the sum of expression (Z) between pairs of genes (y1 and y2): Z = y1+y2.

This yields estimates for genetic and environmental variance in Z. For either genetic or envi-

ronmental components, we note that Var½Z� ¼ Var½y1� þ Var½y2� þ 2Cov½y1; y2�. Conse-

quently, we can solve for the genetic (CG) and environmental (CE) covariances given the

corresponding variances in Z and as well as the single trait estimates for VG and VE. For all

tests, we obtained a p-value across all 12,987 genes and then assign the False Discovery Rate

(Q-values) using “p.adjust()” in R [83].

E. Mapping QTLs for expression principal components

We created a matrix with standardized expression levels for all genes (mean zero and variance

one) for all plants prior to invoking Principal component estimation programs. Using the R

libraries MASS, dplyr, and data.table, we applied the prcomp function to the expression matrix

and extracted the variance explained by each principal component, the loadings on all 1,588

PCs, and the PC scores for each plant for each principal component. We formatted each PC

score list as a phenotype file for input to the Combined analysis pipeline. We first fit the linear
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mixed model to each PC score without a QTL to estimate the genetic and environmental vari-

ance of that trait. Next, we added a QTL single to the model with the position adjust incremen-

tally along each chromosome. Here we tested every other gene location (a step size << 1 cm).

We retained the model fits with the highest log-likelihood per chromosome as putative

pcQTLs.

F. Simulations to test estimation procedures

Our testing and estimation procedures were evaluated using simulations grounded in the

design of our experiment. Specifically, we considered a range of scenarios with and without

genetic variation in expression by simulating phenotypic (expression) data from the observed

genotypes of our 1588 plants. Each simulation replicate starts with the selection of a random

gene. Given this, we can distinguish the cis genotype for each plant (which will affect pheno-

type if we are simulating a cis eQTL) as well as the genomic background (which will affect any

simulated trans effect). To each simulated dataset, we fit the Models 0 and 1 applied to the

actual data, as well as several alternative approaches. For each ML fit, we applied two methods

to estimate the variance generated by the cis eQTL, Vg[r2] and Vg[a] as defined above in the

Methods. We also tested the Haseman–Elston (HE) regression [30] instead of ML to estimate

VE, Vg(cis), and Vg(trans).

The first set of simulations consider the null case where all variation is environmental (VE =

1, Vg(cis) = Vg(trans) = 0). Random normal deviates were generated using the normal() and mul-

tivariate_normal() functions from the NumPy library of python [84]. In this case, we find that

the likelihood ratios tests very nearly follow the predicted null distribution (S9 Fig) but are

slightly conservative–only 3.5% of tests of model 1 yield p< 0.05 instead of 5%. In terms of

variance estimates, bias is minimal for both ML and HE regression, both with and without

genetic variation in expression (S3 Table). This is noteworthy given that ML imposes feasibility

constraints (e.g. VE cannot be negative) while HE regression does not. To simulate data with

cis effects on expression, we sampled a unique additive genetic value for each line from a nor-

mal distribution given a specified value for Vg(cis). We simulate a trans effect generated by

many small effect loci by sampling a vector from the multinormal distribution. The covariance

among plants is determined by Vg(trans) and the relatedness matrix. The mean of estimates

from both ML and HE regression are close to the true values regardless of whether model 0 or

model 1 is fit to the data. In other words, all methods are approximately unbiased. However,

ML is far more precise than HE regression when there is genetic variation in expression. The

root mean square error (a measure of the magnitude of estimation error) is much smaller for

both Vg(cis) and Vg(trans) (S3 Table). We find that Vg[a] is slightly but consistently more precise

than Vg[r2] in estimating Vg(cis). For this reason, we report Vg[a] from the ML fits to each

gene.

While not included in S3 Table, we performed many additional simulations to consider

additional data types and alternative analytical procedures. First, we considered the case where

only two alleles segregate at the cis eQTL. For these simulations, we randomly sampled from a

bi-allelic locus where the positive allele is at population frequency q and has a fixed additive

effect a. Given q and a, Vg(cis) = 2 q(1-q) a2 [85]. We found that Vg[r2], Vg[a], and HE regres-

sion all yielded unbiased estimates for Vg(cis) and the pattern for precision (Vg[a] better than

Vg[r2] much better than HE) was unchanged from the infinite alleles model simulations in S3

Table. Next, for both ML and HE regression, we considered the “leave-one-out” option [86]

for relatedness calculations. With this option, the trans genetic effect considers all chromo-

somes except the one that harbors the expressed gene and putative cis locus. When Vg(cis) = Vg

(trans) = 0, estimation and hypothesis testing outcomes are essentially unchanged using leave-
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one-out. Using leave-one-out in simulation that include either cis- or trans- genetic variation,

the LRT values for model 1 are inflated. This is expected when there is a cis eQTL because the

leave-one-out procedure is designed to increase power. Unfortunately, we also see that they

are inflated in simulations where Vg(trans) > 0 but Vg(cis) = 0. This implies an elevated false pos-

itive rate. This occurs because the fixed effect parameters describing the cis eQTL can “absorb”

the effect of trans eQTLs that are on the same chromosome, loci that are not included in the

relationship matrix with leave-one-out. In our simulations, we assume that trans loci are dis-

tributed uniformly over the genome. For genes on large chromosomes (e.g. chromosome 14 in

Mimulus), a substantial fraction of the trans-effect will emanate from genes on the same chro-

mosome. We also find that the variance component estimates can be poorly behaved in the

leave-one-out model fits applied to our experimental design. For these reasons, we used the

overall relationship matrix in analysis of the actual data. This method might be underpowered

in general, but that is not a major difficulty for the current study given that nearly all cis

eQTLs were significant anyway (see Results).

G. Estimating the overlap of pcQTLs with eQTLs

To assess overlap of pcQTLs with the eQTLs, we defined a genomic window around each

pcQTL of +/- 2mb from the LOD peak. Noting the specific PC affected by the pcQTL, we

determined the loadings of this PC onto each expressed gene (12,987 values). For testing

against cis eQTLs, we asked if the loadings on genes within the window around the pcQTL

were larger in magnitude than loadings on gene elsewhere in the genome. For a single pcQTL,

we compared the means from two lists: the squared loadings on genes within the window

(median of 263 per pcQTL) versus the genes outside the window (median of 12724 per

pcQTL). We then performed a paired t-test on the differences across all pcQTLs. The loadings

were larger within windows (t195 = 2.26, p = 0.025).

The test for overlap with trans eQTLs is similar in structure, a comparison of loadings

within the pcQTL window versus those outside. However, here we surveyed the list of trans

eQTL / affected gene pairs. For each such pair we noted whether the trans eQTL genomic loca-

tion (the position of the causal locus) was within the pcQTL window or not. If so, the loading

on the affected gene (which would generally reside elsewhere in the genome) would be added

to the “within window” list. If the trans eQTL was located outside the pcQTL windows, the

loading of the affected gene was added to the outside window list. Within window lists con-

tained a median of 185 affected genes while the median count was 9874 for the outside list. As

previously we distilled each list within each pcQTL into a mean of squared values and com-

pared them across pcQTLs using a paired t-test. The loadings were larger on genes with trans

eQTL located within windows (t195 = 2.92, p = 0.004).

Supporting information

S1 Table. A summary of features from our de novo assemblies based on PacBio sequenc-

ing. N50 = the length of the shortest scaffold in the ranked list that covers at least 50% of the

assembly.

(DOCX)

S2 Table. The nucleotide diversity (π) and indel frequency (U) is reported for each gene in

three intervals, within the gene body, the 1kb upstream of the gene, and the 1kb down-

stream of the gene.

(XLSX)
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S3 Table. Simulations with cis alleles sampled from a normal distribution with Vg(cis)

specified. The color coding (green for r2, blue for [a], pink for HE) identifies the standard

deviation among replicate simulations for each model for the non-zero genetic parameters in

each simulation case. Since the estimators are (nearly) unbiased, the standard deviation esti-

mates the root mean square error. For cis genetic effects, the error is smaller for blue than

green and both are much smaller than pink. For trans genetic effects, the error is the same for

green and blue (the estimators are the same) but again much smaller than for pink.

(XLSX)

S4 Table. The results from testing the cis eQTL at each of 12,987 genes scored for expres-

sion. “Number of alleles (cis eQTL)” and “Heterozygosity at cis eQTL” are derived from the

allele partitioning method applied to each gene. LRT1 and LRT2 are the likelihood ratio statis-

tics testing for additive and dominance effects, respectively. The p-value and q-value (FDR) is

reported for each test. The last three columns report the variance component estimates for the

LRT1 model fit: Ve, Vg_trans, and Vg_cis.

(XLSX)

S5 Table. A regression of LRT1 values onto nucleotide diversity (p) and indel diversity (U)

within three regions about each gene. Each predictor was standardized to unit variance (z

transform) to make the regression coefficients comparable.

(DOCX)

S6 Table. Significant trans eQTL tests are distilled into 1,979 loci. Each locus is given a

unique name (first column) and then identified to cross and genomic location. The last two

columns are the number and identity of affected genes.

(XLSX)

S7 Table. The estimated environmental (Ve) and genetic (Vg) variance for each PC score is

reported for the first 200 PCs. h2 equals Vg/(Vg+Ve).

(DOCX)

S8 Table. For each of the 196 pcQTLs with p< 10−5, we report the genomic location,

affected PC, p-value, number of distinct functional alleles, heterozygosity, the additive,

dominance, and total LRT tests (LRT1, LRT2, LRT_total).

(XLSX)

S9 Table. The loadings on standardized traits for the first 200 expression principal compo-

nents.

(XLSX)

S10 Table. The locations are reported for 33,302 recombination events detected across

1,373 F2 plants. Each event is localized by differing genotypes (each with posterior

probability > 0.99) at bracketing markers (left and right of the recombination breakpoint).

The location of these flanking markers is reported as bp position in the IM767 reference

genome.

(XLSX)

S1 Fig. The fraction of nucleotide positions that differ (π) within genes is reported between

each pair of lines. We calculated π for each chromosome, and then averaged these 14 values to

obtain the mean and standard error (the latter used to calculate the 95% CI).

(PDF)
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S2 Fig. The eQTL plot of all nine families (crosses).

(PDF)

S3 Fig. The rate of recombination within a chromosomal region affects average gene

expression. We divided all gene regions into quartiles (x-axis) and averaged the Log CPM

across genes within each region.

(PDF)

S4 Fig. The correlation of additive effect estimates between the Cross-specific (x-axis) and

Combined (y-axis) analyses is 0.96.

(PDF)

S5 Fig. The strength of evidence for a cis eQTL (LRT1) is positively correlated with Vg(cis).

(PDF)

S6 Fig. Mean expression (measured as CPM on a log scale) is a strong positive predictor of

test significance (left) and a strong negative effector of VE (right).

(PDF)

S7 Fig. GG (left) and CE (right) each exhibit distributions with a roughly equal mixture of pos-

itive and negative values.

(PDF)

S8 Fig. The magnitude of the genetic covariance (mean C2
G) increases with the number of

families that segregate a trans eQTL.

(PDF)

S9 Fig. The distribution of LRT1 (the test for an additive eQTL) across 5000 simulations

when there is no eQTL. The actual mean of simulations (8.77) is slightly below the null distri-

bution predicted value of 9 for a chi-square distribution with 9 df.

(PDF)

S1 File. This tarball contains all of S1 File (python code and the instructions to run all pro-

grams).

(GZ)

S2 File. The protocol is reported for High Molecular Weight DNA extraction.

(PDF)
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